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Provisional mutational spectra at the hypoxanthine phosphoribosyl transferase (HPRT) locus in vitro have been worked out for acetaldehyde (AA) and
benzo[alpyrene diolepoxide (BPDE) in human (T)-lymphocytes and for ethylene oxide (EtO) in human diploid fibroblasts using Southern blotting and
polymerase chain reaction (PCR)-based DNA sequencing techniques. The results indicate that large genomic deletions are the predominating hprt
mutations caused by AA and EO, whereas BPDE induces point mutations that are mainly GC>TA transversions. The mutational spectra induced by
the three agents are clearly different from the background spectrum in human T-cells. Thus, the hprt locus is a useful target for the study of
chemical-specific mutational events that may help identify causes of background mutation in human cells in vivo. - Environ Health Perspect
102(Suppl 4):135-138 (1994).
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Introduction
Humans are exposed to many compounds
in ambient air that are known to cause
genetic damage in various test systems.
The possible consequences of this exposure
include somatic mutation in critical target
genes that may lead to cancer and germ
line mutation that may lead to genetic dis-
ease in the offspring. To elucidate the
course of events resulting in these severe
consequences, it is important to study the
frequency and spectrum of background
mutation in human cells in vivo. It is also
important to determine the relative contri-
bution of mutation induced by environ-
mental agents as opposed to spontaneous
mutation caused by endogenous factors.
This research should be carried out for
each specific gene locus and cell type of
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interest because genes may differ with
regard to mutation rates and the types and
phenotypic consequences of mutation.
Moreover, the same genes in different cell
types may respond differently to mutagens
depending on factors such as transcriptional
activity and DNA repair activity (1).
The development of methods for the

analysis of mutation at the human locus for
the purine salvage enzyme hypoxanthine
phosphoribosyl transferase (HPRT) has
offered several unique possibilities for the
evaluation of human in vivo mutagenesis
(2-4). Human T-cell cloning can be per-
formed with high cloning efficiency, and
selection for HPRT mutants in mediums
containing 6-thioguanine yields reliable and
reproducible estimates of the mutation fre-
quency in the T-cell population from the
peripheral blood of individual subjects
(5-9). Information with regard to the
clonality and origin of HPRT mutation is
obtained by molecular analysis of the clone-
specific T-cell receptor rearrangement (10).
A further advantage of the human T-cell

mutational system is that the nucleotide
sequence of the entire human HPRT gene
of more than 44 kb has been worked out
(11). This provides a variety of tools and
approaches for the molecular analysis of
HPRT mutation, including methods for
screening of mutations such as ribonuclease
mismatch cleavage (12), denaturing gradi-

ent gel electrophoresis (13), constant
denaturant gel electrophorisis (14), multi-
plex PCR (15), as well as direct sequencing
of PCR products derived from genomic
HPRT DNA and HPRT-cDNA (16-18).
Another important aspect of human

HPRT-mutation analysis is the possibility to
study germ line mutation. Constitutional
HPRT deficiency in humans gives rise to
Lesch-Nyhans syndrome (LNS) or X-linked
gout. The former is a clinically well-defined
condition caused by complete or almost com-
plete HPRT deficiency. The latter is a less
severe disease associated with symptoms of
gout and renal stones at young age in which
HPRT deficiency is reduced but not complete
(19). Almost 100 LNS- and HPRT-deficient
gout patients have been studied with respect
to the molecular nature of the HPRT muta-
tion, thus providing information on the
mutational spectrum, causes, and mechanisms
ofhuman germ line mutagenesis (4,20).
The human T-cell cloning assay can also

be used to study HPRT mutation induced
by specific chemical agents (18,21-23) and
radiation (24) in vitro. These studies are
needed to provide information on the pos-
sible contribution of environmental muta-
gens to the type and frequency of back-
ground mutation in vivo. As demonstrated
in the present work, some agents induce a
mutational spectrum in T-cells that is char-
acteristically different from the spectrum of
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Table 1. Types of mutation at the human hprt locus and methods for their detection (4).

Type of mutation Method Comment

Chromosomal mutation Cytogenetic karyotyping No mutation of this type has been detected so far
Gross structural alterations Southern blot analysis about Only deletions larger than about 100 bp

are detected
Point mutations Sequencing of PCR-amplified

cDNA or genomic DNA
Missense mutation Coding error causing an amino acid substitution
Nonsense mutation Coding error causing a stop codon
Frameshift mutation Small deletion / insertion affecting the reading frame
Splice mutation Change affecting sequence involved in

splicing functions

Table 2. Point mutations at the hypoxanthine phosphoribosyl transferase locus in germ line and somatic cells
(20,26,31,37).
Type of point mutation Lesch-Nyhan and gout patients TG-resistant T-lymphocytes

Amino acid substitution
Missense 46 (53%) 36 (40%)
Nonsense 8 (9%) 8 (9%)

Small deletions/ insertion (frameshift) 20 (23%) 17 (19%)
Splice mutations 12 (14%) 29 (32%)
All point mutations 86 (100%) 90 (100%)

background mutation as well as from that
of other agents. This information may be
used in order to deduce the environmental
causes of human mutation in vivo.

Hence, the human HPRT mutational
assay offers unique possibilities to compare
the spectrum of mutation in human germ
line and somatic cells with that induced by
specific mutagens at the same locus in
vitro. In this article, we report on our stud-
ies of mutation induced in vitro by three
urban air pollutants, acetaldehyde (AA),
benzo[a]pyrene diolepoxide (BPDE), and
ethylene oxide (EtO).

Materials and Methods
Mutation induction of AA and BPDE was
studied in freshly prepared human lymphocytes
from male donors using the T-cell cloning
method (22,23). EtO-induced mutations were
studied in human diploid VH-10 fibroblast cul-
tures at early passages (25). Mutant dones were
selected in mediums containing 6-thioguanine
after the appropriate expression time of 8 to 10
days. RNA and DNA preparation, Southern
blotting, PCR of genomic HPRT DNA,
HPRT-cDNA, and DNA sequencing were
carried out as described earlier (18,26).
The types of mutation studied are shown in

Table 1. Chromosomal mutation affecting
the HPRT locus at Xq26 still has not been
detected in any of more than 100 human T-
cell mutants studied (27,28), and this type of
mutation will not be further discussed here.

Results
The Background Spectrum
ofHPRT Mutation
Gross structural alterations detected by
Southern blot analysis account for about 10 to

15% of the background spectrum of HPRT
mutations in T-lymphocytes from adult
donors (29) and in patients with LNS (30).
The background spectrum of point mutation
at the HPRT locus in human T-cells was

compiled and discussed by Hou et al. recently
(26). These data are shown in Table 2
together with data on germ line HPRT muta-

tion derived from studies of LNS and gout

patients (4,20). It is obvious that the types
and relative frequencies of the various types of
mutation in germ line and somatic cells are

similar, with the possible exception that splic-
ing mutations seem to be less frequent in
the germ line than in the somatic cells, as

pointed out by Rossi et al. (31).
Although almost 100 somatic and germ

line-point mutations have been mapped in the
human HPRT gene, very few have been found
to recur at the same site within the HPRT
coding sequence of 654 base pairs. Thus, the
mutations are widely dispersed along the cod-
ing sequence, and there are no predominating
mutational hot spots (4,20,26).

Acetaldehyde-induced
HPRT Mutation
Human exposure to AA occurs regularly
because of its production by endogenous

metabolism and its presence in the environ-
ment (e.g., automobile exhausts, cigarette
smoke, ambient air). The genetic toxicity of
AA has been demonstrated in a variety of test
systems, and there is evidence for its carcino-
genicity in experimental animals (32). The
ability of AA to induce HPRT mutation in
human T-lymphocytes in vitro was demon-
strated by He and Lambert (22). Cells treat-
ed with 1.2 to 2.4 mM ofAA for 24-hr, or
0.2 to 0.6 mM for 48 hr showed a dose
dependent, 3- to 16-fold increase of the
mutant frequency. At the highest concentra-
tion of AA, 40% of the T-cell mutants were
found to have large genomic deletions
detectable by Southern blot analysis. In con-
trast, the frequency of large deletions in
untreated cultures was only about 10%,
which is similar to the frequency of gross
structural alterations in the background spec-
trum of HPRT mutation (discussed above).
All of the AA-induced deletions were found
to extend into the 3' -flanking region of the
HPRT gene, whereas the deletions in the
control cultures mainly affected the 5' part
of the gene (22). Thus, large 3'-flanking
deletions may be an important type of
HPRT mutation induced by high dose AA
in vitro. Nevertheless, 60% of the mutations
in the treated cultures showed normal
Southern blot patterns, indicating that the
majority ofAA-induced mutations in human
T-cells are likely to be point mutations. The
nature of these mutations are not known yet.

BPDE-induced HPRT Mutation
BPDE is a carcinogenic in vivo metabolite of
benzo[a]pyrene, one of the most well-known
combustion products in vehicle exhausts, cig-
arette smoke, and ambient air. There are
four different stereochemical forms of BPDE,
and the (+)-anti form is the most potent
mutagen in mammalian cells (33). The fre-
quency ofHPRT mutation in human T-cells
treated with 0.3 to 0.6 pM of (+) -antiBPDE
for 24 hr was found to increase in a dose-
dependent way up to 50 times the frequency
in untreated control cultures (23). Thus,
BPDE is a potent mutagen in this system.
No large alterations of the HPRT gene could
be detected by Southern blot analysis in the
BPDE-induced T-cell mutants, which shows
that BPDE induces mainly point mutations.
Direct sequencing of HPRT cDNA and
genomic HPRT DNA from the mutant dones
showed that the predominating type of base
pair substitution induced by BPDE in the cod-
ing and splicing sequences was GC>TA trans-
version. In the coding region of the HPRT
gene, these mutations were preferentially locat-
ed in the sequence context -AGG- or -GAA-
(18). In the concurrent control spectrum as
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Table 3. Characteristic features of the hypoxanthine phosphoribosyl transferase mutational spectra induced by
acetaldehyde, benzo[a]pyrene diolepoxide, and ethylene oxide as compared to the background spectrum
(18,22,26,40). a

Background Acetaldehyde BPDE Ethylene oxide

Large deletions and rearrangements 10% 40% 0% 48%
Base substitutions

GC>AT 17% NS 0% 7%
GC>TA 10% NS 41% 4%
Other 17% NS 14% 11%

Small deletions and insertions 17% NS 5% 4%
Splice mutations 29% NS 41% 26%

NS, not studied. 8 The background, AA and BPDE spectra were was derived from human T-lymphocytes, and the
ethylene oxide spectrum is based on fibroblast data (40).

well as in the general background spectrum,
GC>TA transversion accounts for a minor
proportion of the base pair substitutions.
Moreover, there was a strong preference for
mutation induction in the nontranscribed
DNA strand, suggesting that BPDE adducts
are more efficiently removed from the tran-
scribed than from the nontranscribed DNA
strand (18). This is likely to be a consequence
of preferential DNA repair, as demonstrated
previously in the HPRT gene (34,35) and
other genes (1). Thus, these data show that
there is a clear difference between the BPDE-
induced mutational spectrum as compared to
the background spectrum (Table 3).

Ethylene Oxide-induced
HPRT Mutation
EtO is formed in humans and animals by
metabolism of ethene, a widely distributed
air pollutant present in car exhausts and
cigarette smoke. Ethene also is produced
endogeneously. The genetic toxicity and
animal carcinogenicity of EtO is well doc-
umented, and human occupational expo-
sure to EtO has been associated with an
increased risk of leukemia (36). The
mutagenic effect of EtO in the HPRT gene
in human diploid fibroblasts was demon-
strated recently by Kolman et al. (25).
The mutant frequency was found to
increase linearly within the dose range of
2.5 to 10 mM of EO, with a mutagenic
potency of 9.8 x 10 6 mutants per mMh.
Independent mutant cell clones were stud-
ied with PCR-based techniques and direct
DNA sequencing or Southern blot analysis
to unveil the nature of the EO-induced
mutations. Among 28 mutants studied,
48% demonstrated large genomic deletions
of the whole or part of the HPRT gene.
Most of the partial deletions have breaking
points in the 5' part of the gene. The
EtO-induced point mutations include one
bp deletion causing a frameshift mutation,
six base pair substitutions causing missense

or nonsense mutations or affecting the
translational start codon, and seven splicing
mutations. Thus, these results (40) indi-
cate that EtO induces both point muta-
tions and gross structural alterations in
human fibroblasts, with a strong preference
for large intragenic or total HPRT deletions.

Discussion
Our data, summarized above, show that each
of the three urban air pollutants studied
induces a very specific mutational spectra at
the HPRT locus in human cells in vitro
(Table 3). The mutants were selected from
experiments in which the mutant frequency
was increased by a factor of 10 or more.
Thus, at least 9 out of 10 mutants should be
induced by the chemical compound.
The most informative mutational spec-

trum was obtained in the BPDE-treated cul-
tures. All of the BPDE-induced HPRT
mutants were found to have point muta-
tions, 41% being GC>TA transversions
causing coding errors and 41% splice muta-
tions (Table 3). In the normal background
spectrum, GC>TA tranversions in the cod-
ing region account for only 10% of all muta-
tions (Table 3). Benzo[a]pyrene is a ubiqui-
tous urban air pollutant, and it is likely that
its metabolite BPDE induces HPRT muta-
tion in T-cells in vivo. For the sake of dis-
cussion one may assume that all the back-
ground GC>TA transversions in vivo are
due to BPDE mutagenesis. Since BPDE-
induced splice mutations also should con-
tribute to the spectrum of background
mutations, at most 24% (0.1/ 0.41) of all the
background mutations in vivo could be
caused by BPDE. However, the true figure
is probably much lower because spontaneous
mutation due to replication error contributes
to the background frequency of GC>TA
transversions, and BPDE is not likely to be
the only environmental mutagen that gives
rise to this type of base substitution. It will
be interesting to study whether subjects who

sustain high exposure to benzo[a]pyrene and
other (PAHs) show any significant increase
of base substitution (e.g., GC>TA transver-
sion mutation) or other type of mutation as
compared to unexposed controls. Such stud-
ies could focus on heavy smokers who are
known to have increased frequencies of in
vivo HPRT mutation (8,9) and on coke
oven workers preferentially having concomi-
tant exposure evaluation by measurements of
individual PAH-DNA adduct levels (38).

It is possible that a certain fraction of the
large deletion mutations in the background
spectrum ofHPRT mutation is due to in vivo
mutagenicity ofAA and EtO, considering the
predominance of such mutations in the corre-
sponding in vitro spectra (Table 3). To assess
this possibility, further studies of individual
mutational background spectra and chemical-
specific mutational spectra in vitro are needed.
Tates et al. (39) recently demonstrated an
increased frequency of HPRT mutation in
peripheral lymphocytes of factory workers
occupationally exposed to EtO. The compar-
ison of mutational spectra in such workers
with the background spectrum in unexposed
individuals and the spectrum ofHPRT muta-
tion induced by EtO in vitro wiU improve the
basis for quantitative estimation of the risk
associated with EtO exposure in vivo.
Knowledge about mutational spectra

induced by specific chemicals or radiation at
the HPRT locus will also be extremely use-
ful in elucidating the mechanisms by which
mutation occurs in human cells in vivo and
to evaluate the influence of metabolic activa-
tion and DNA repair. Because mutation is
likely to be the initiating step in many car-
cinogenic processes, the elucidation of the
mutagenic mechanisms also may contribute
to the understanding of carcinogenesis. The
HPRT gene is a large locus in which many
different types of mutation are detectable,
from large deletions and rearrangements to
single base substitutions (4,26,31).
Therefore, the HPRT locus may be a usefu
target for the identification of in vivo muta-
tions that are specific or typical for a particu-
lar carcinogenic agent or exposure.
Moreover, the identification of carcinogen-
specific mutational spectra may be extremely
valuable in human biomonitoring and
quantitative risk evaluation.
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